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It is shown by an example that there are continuously differentiable functions
with only finitely many zeros that cannot be considered as elements of a Cebysev
system of continuous functions.

Let Me [R and let [RM be the linear space of real-valued functions defined
on M. An n-dimensional subspace U of [R'H is called a Haar space and its
bases are called Cebysev systems if no f E U\ {o} has a strong alternation of
length n + I (see [2, Chap. 3 j). Kurshan and Gopinath [1] showed that for
an arbitrary g E IR M there is a Haar space containing g if (and only if) g has
only finitely many weak sign changes, They also raised the question whether
this result holds for the continuous case, i.e., whether any g E C(M) with
only finitely many weak sign changes can be embedded into a Haar space
U c C(M). We shall subsequently give an example showing that the answer
is negative even if g is continuously differentiable.

Let M = 10, OC!) and g E C(M) be defined by

g(x) = °
= x

3 (1 + ~ + cos (: ) )

for x = 0,

for x> 0.

Now suppose there exists an n-dimensional Haar space U c C(M) with
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g E U. Let h E U be a function with h(O) = I, and 6 >°be chosen such that
1<h(t)<2 for tE 10,6].

Then one easily checks that for all k sufficiently large, one has

I
>- -­
.y k 1

for odd k,

for even k.

So it is evident that for sufficiently small I: > 0, the function g/h -- £~ has
more than n zeros on 1£4/3 , £ I. The same then holds for g - £4h E U, a
contradiction.

On the other hand, the answer is positive if one makes the additional
hypothesis that g is strictly monotone in a neighbourhood of each of its
zeros. This follows from a minor modification of the argument given in 12.
Chap. 201.
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